Functional dissection of the cGK substrate IRAG using transgenic models
نویسندگان
چکیده
NO/cGMP signalling via cGMP-dependent kinase I (cGKI) induces a variety of physiological functions comprising relaxation of smooth muscle and inhibition of platelet aggregation. Several signalling pathways of cGKI exist including the interaction of the cGKIβ isozyme with the inositol 1,4,5-trisphosphate receptor I (IP3RI) associated protein cGMP kinase substrate (IRAG). To get insight into the physiological function of IRAG protein a knockout mutant of the IRAG gene was generated by targeted deletion. Expression of other cGKI substrate proteins in mutant smooth muscle tissues and platelets was not affected upon IRAG deletion. Interestingly, the localization of cGKIβ was unchanged in IRAG-deficient vascular smooth muscle cells. Analysis of smooth muscle contractility suggests that signalling via IRAG is essential for endogenous and exogenous NO/cGMP-dependent contractility of aortic smooth muscle. Furthermore, NO/ cGMP-dependent relaxation of murine colon is dependent on this signalling cascade. In platelets, IRAG-deficiency abolishes the NO/cGMP-dependent inhibition of platelet aggregation and granule secretion. These results strongly suggest that IRAG signalling is a predominant physiological signalling pathway of NO/cGMP in smooth muscle and platelets. from 4th International Conference of cGMP Generators, Effectors and Therapeutic Implications Regensburg, Germany. 19–21 June 2009
منابع مشابه
Vascular and renal function of cGMP signalling
Results For the functional analysis of cGMP signalling, transgenic murine mutants were used. cGKI signalling pathways include interaction of the cGKIb-isozyme with the inositol 1,4,5-trisphosphate receptor I (IP3RI) associated protein cGMP kinase substrate (IRAG). NO/cGMP and ANP/cGMP-dependent relaxation of aortic smooth muscle was strongly affected in IRAG-deficient mice. NO/ ANP-dependent in...
متن کاملIRAG determines nitric oxide- and atrial natriuretic peptide-mediated smooth muscle relaxation.
AIMS Nitric oxide (NO) and atrial natriuretic peptide (ANP) signalling via cGMP controls smooth muscle tone. One important signalling pathway of cGMP-dependent protein kinase type I (cGKI) is mediated by IRAG (IP(3) receptor associated cGKI substrate) which is highly expressed in smooth muscle tissues. To elucidate the role of IRAG for NO- and ANP-mediated smooth muscle tone regulation, cGKI lo...
متن کاملcGMP-dependent protein kinase I and smooth muscle relaxation: a tale of two isoforms.
The maintenance of vascular tone is central to the regulation of blood pressure and tissue perfusion and plays a role in the pathogenesis of hypertension and atherosclerosis. Vascular tone is determined by the balance of vasodilator and vasoconstrictor stimuli. After several decades of research, the NO/cGMP/cGMP-dependent protein kinase (cGK) pathway is now recognized as an important mediator o...
متن کاملTruncated IRAG variants modulate cGMP-mediated inhibition of human colonic smooth muscle cell contraction.
Nitric oxide (NO) induces relaxation of colonic smooth muscle cells predominantly by cGMP/cGMP-dependent protein kinase I (cGKI)-induced phosphorylation of the inositol 1,4,5-trisphosphate receptor (IP(3)R)-associated cGMP kinase substrate (IRAG), to block store-dependent calcium signaling. In the present study we analyzed the structure and function of the human IRAG/MRVI1 gene. We describe fou...
متن کاملEndogenous type II cGMP-dependent protein kinase exists as a dimer in membranes and can Be functionally distinguished from the type I isoforms.
In mammalian tissues two types of cGMP-dependent protein kinase (cGK) have been identified. In contrast to the dimeric cGK I, cGK II purified from pig intestine was shown previously to behave as a monomer. However, recombinant rat cGK II was found to have hydrodynamic parameters indicative of a homodimer. Chemical cross-linking studies showed that pig cGK II in intestinal membranes has a dimeri...
متن کامل